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Abstragt

Atmospheric deposition can be 2 significant seurce of phosphorus o South Florida's agquanc system. The weekly
lolal phosphorus (TPY concenlrations in rainfall huve heen measured routinely in the region since 1974, but the
historical data set has significant gaps due o instrumental [ajlures and sumple contamination. This study arempts to
develop a statistical model of rainfall-borne TP concenlralion to estimate missing data. The model is based on a
multivariale stochastic time-serics theory. The model parameters and noise covariances were calibrated using the
expectation muximization algorithm which is known w be efficient for data scts with many gaps. Model verification
Jemonsteates that the calibraled model provides unbiased data cstimales while preserving the statistics of the raw
datu. The data with gaps filled in are useful for compuling the weekly TP loads. € 1999 Elsevier Science B.V. All
nightls reserved.

Kepwords: Atmospheric deposition: Total phosphorus; Missing data; Kalman filter; Time seres model; Expectation—
maximization algerithm :

1. Introduction

Phosphorus concentrations of aquatic systems
are directly related to eutrophication and to the
structure of the wquatic vegetation community.
The management of phosphorus inpuls w the
South Florida eccoaystem has become an increas-
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hosung aluwgisfwmd. gov,

ing concern resulting in the need for aecurale
monitoring and analyses of phosphorus distribu-

‘tion in the region. The South Florida water man-

agement - district  (Districty  has  collected
atmosphenic deposition dati in the region since
1974. The monitaring program was significantly
improved in 1992 with the deployment of wet/dry
collectors (Aerochem Metrics Model 301 auto-
matc wet/dry sampler) and adoplion of a stan-
dard operating procedure (or atmospheric data
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Fig. 1. Locations of the wtmospheric deposition menitoring sites operated by the South Florida water managermenl districl.

collection and processing. Currenlly, there are a
total of 19 atmospheric deposition monitorng
sites operated by the District (Fig. 1). Weat and
dry deposition dara have been collected in weekly
intervily and analyzed at the District’s laboratory
to determine the level of nutrients and major lons.

However, there is a significant amount of miss-
ing data in the measured nutrient data sets caused
by imstrumental failure and sample contamination
due to bird droppings and other fareign matter:
About 64%; of ruinfall Lotal phosphorus (TP) con-
centration data collected on a weekly bhasis in the
region s missing from the historicul data sets
{Ahn, 1997). The amount of raintall-borne phos-

phorus loads to the ecosvstern can be accurately
eutimated at weekly time intervals since corre-
sponding rainfall is highly vadable in space and
time. Althouph the gaps in the data are not
necessarily detrimental o quantifying monthly or
yearly summary stitistics, they do preclude caleu-
lation of weeklv raintall TP loads. If the physical
processes driving the ccenrtence and transporta-
ton mechanism of atmespheric deposition are
known, one could build a mathemarical model to
estimute the data gaps. However, neither a mathe-
matical model nor supporting input dalu for the
model on a regional scale are available. Alterna-
tivelv, one can adopt an empincal approach using
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a statistical model based on currently available
data to estimate the missing dats. Thus the ob-
jective in this study was Lo develop a statistical
model to estimale the missing data in the phos-
phorus concentration of ramnlall.

This study uses a multivariate time-zeries
model with covarate terms since the data are
meusured at multiple sites, For complete (no
missing) data sets, a varety of numerical al-
gorithms, such as Gauss—Newton method and
scoring methad (Box and Jenkins, 1976; Brock-
well and I[davis, 1987; Harvey, 1990)), are avail-
able 1o estimate paramelers in the time-series
models, but they are not applicable for an in-
complete duta sct. For incomplete data sets
which have some dats gaps in them, it has been
known (Dempster et al, 1977, Shumway and
Sroffer, 1982; Stoffer, 1983, 1986) that an expec-
tation -maximization (EM) algorithm is suitable
for estimating parameters of time-series models.
A pre-condition o applying the EM algorithm is
to set the model into state—space form to esti-
mate Kalman filkering and smoothing estimates.
The Kalman filtier and smoother recussions
provide a comvenient means for caleulaung the
conelitional expectations of both state and error
veclors. The reason for wsing smoothing in this

Ccase is to take advantage of the forwurd mea-
surement information and to give o ast conver-
gence  in the EM  algorithm. The Kalman
filtering in comjuncoon with a stochaslic time
series model has been widely applicd for ecologi-
cal modeling and data analyses (Padgett and Pa-
padopoulos, 1979; Chen and Papadopoulos,
1988; Tiwarl and Dienes, 1994; Boudjerma and
Chau, 1996), but no specific work has besn
found for dealing with incomplete ecological
data sets. Thus the overall EM algorithm ap-
plicd to the TP data observed [rom multiple
sites is introduced in the next szction,

2. Method

2.1 Autoregressive model with covariate

Consider a multi-variate stale  vector X, =

(%, 10X, e al time 7 (=1,..,T), where (nx) is
the number ol state sizes, I is the tme span,
and () denotes transpose of a matrix. With the
{(nz) multiple covariale vector z, ={Z,1,...sZcps)
which is measured completely and concurrently,
the order-g multivariale autoregression model is
given by

i
X, = E¢x,_ﬂ+¢f/z,+w, (1
Lo ]
where ¢(nx = nx) and {nx = nz) are the regres-
sion parameters, and w, is the Gaussian while
noise with w, = ¥(0, ). For wet TP concentra-
tion data, x, could represent a TP vector mea-
sured from nx muliiple sites at time {, while z,
may be a concurrently measured covariate vector
having a size of nz.

To estimate the paramelers  {¢, @, @1,
an EM algorithm can be applied in conjunction
with the modified Kalman smoother estumators
o derive a simple recursive procedure. The EM
algorithm is known to be an alternative non-lin-
gur optimization algorithm suitable (or estimat-
ing missing data (Dempster et al, 1977;
Shumway, 1988). To apply the Kalman filter re-
cursion, Bq. (1) should be sct into a state—space
form which consists of state and measurcment
equations. With an augmented vector X(¢) =
[, ,.1]. the state cquation of Eq. (1) 15
the form oft

Br o e B [x W
x(r) = 1 0 O vz
0 10 [x-, K
.
[z,] + U =dx(t— 1)+ Wz(l) + w(e) (2)
0

where dH{nc = ne) and ‘F(nc = nz) are the aug-
mented matrices with a dimension of ne( = nx x
g), and 1 and 0 in the parameter matroces
denaote the one and zero diagonal matrices. To
allow for estimating the missing data, the mea-
sutement ¢quation is written by:
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Fig. 2, Schematics of filtering and smoothing of a multvariate anlorepressive model wilh covariate.

o=

+ b, = M({x(t)+ v,
(3
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Ayt

where y,(nx x 1) 18 the state measurement vector
at 1, M{r) is the (oX » nc) measurement matlnix in
which the diagonal element {m,} is 1 if y, is
measured, or 0 otherwise. The measurement nolse
v, is the Gaussian white noise having v, = N(0, R),

2.2, The Kalman filtering and smoothing

The problemn of cstimaling x(r) in Eq. (2) can
be approached by the expectation of it condition-
mg on the measurements (y,,...,»,) as:

(4)

where 5 is the span of the meassurement, With the
state estimation error vector %, defined as Lhe trug
vilue minus the above estimated value, the error
covariance cun be estimated by

xf = B[ FuZinnd.]

U= ERE [ yi-aVe 202, (3)
The following problems occur when estimating
the xf and p: il r=y¢ it i called a filtering
prablem; it 7 - 5, it is a smoothing problem. Fig. 2
shows a schemaitic of filtering and smoothing (or
the given time-series model expressed by Eq. (1).

Based on the state—space form, the forward
recursion {r=1,....7) of the stale and error co-
variance ure given (Jazwinski, 1970) by

T =del 2 - () {6)

pi = 0p 0 [g 3} (7)
Ke=pi "My IM(Op; ' M() + R~ (8)
xp=xi" + Ky — Mg~ (9)
pl=pim FEMOp! (10}

Detining the expectations of state and error co-
varnances conditioning on all availuble meusure-
ments (¥,... r) ds

(11
(12)
reapectively, the corresponding Kalmun smoother

in backward recwsion {({=7,T— 1,1} iz then
aiven (Juzwinski. 1970) by:

J':;r= E[x(!) |_.Vl1---1.yT1 Z],...,El]

P;’T. = E[%.%, l VO L S

J_1i=pi Ty (13)
Plovca=EBlx¥_ =2 Wxt =& 0y
Yier] (14)
X =X T xeF —dx Y (15)
Ploi=pii+ 4 alpl—pt W (16)

P}T‘—L.:—:‘:P::}J’r—z +Jr—1[[3'rj,.1—1 —Opi 2 s
{17

where the Eq. (17) provides the lag-one simaothed
error covariances heeded for the expectation siep
{Shumway and Stolffer, 1981),

2.3, Expectation-maximizarion algorithm

A log likelihood, ]nL(.:cl,...,x,-|E)), baszed on a
complete data set (x,...x,) cun be estimated by
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an capectation conditioning on # which 1 the
parameter set of the model to be estimated. The
EM algorithm is designed to find # iteratively by
maximizing the expectation of the compiste-data
log likelihood conditoned on the measored data.
That is, the cxpectation step al the [-th iteralion
computes the log-likelihood function of:

Fet.{? | 8,) = EMnf {x(1),...x{T),
CHRR I TR - S & (18)

The maximization step then chooses &, (o max-
imize Fct.(#l8,) using one of the oplimization
technigques. Sinece the (x,,....x7) Process cannot he
mewsured directly, Eq. (18) can be written in erms
of the Kalman smoothed estimators. The following
expectation lerms (Stoffer, 1985) are needed (o
compule the maximization step:

o
A= Z (prr--l +-""-1T— 1'\'-?‘-— IJ)!

1=

"
- . T T o~

£= L(\p:r--l+‘vt—1x1—lrJr
rm=1

!
C= Y (p/ +x0xi),
re=|

T

F= 2 [x7_.2(r)]

Jo-)
,
G= 3 [x/z(ty] and
F=1
-
H= Zl[z(r)::(r)’] (19)
where x7, is the first sub-vector in the x[' =
/) eax D, o 1], and the corresponding dimensions
are: A(ns = ns); B{nx = ns) C(nx = ux);, F(ns =
ne); Ginx = no); and A(ne # ne). with ne—=(nx x
q). An incomplee-data log-likelihood function is
calculsted (Gupta and Mehra, 1974; Shumway and
Stoffer, 1981) by

- .
nL(¥)a Y M (0pi = Mty

Il |

,
+ YelmMMp o My - R

|

gi! {20}

with ¢/~ (y, — M(0x!i ™Y, and x] ' and pi~!
are obtained from the forward recursion.

The maximization step is Lthen obtained by max-
imizing Eq. (18) with respect to the parameters 2,
(2. and R. The resulting estimators (Shumway and
Stofter, 1982: Stotfer, 1983) are given by:

ol A F ‘
00~ [B fr][F H} @n
. b
Q1= (C' -0 II:G] _[b‘ G]H.' 11
A F ‘ )

+ Hfﬁ-[ﬁv H—lU:+I)/T (22)

iz
R,+1=?E lew+ M(Op M)} ©(23)

r—1

where e, is the estimation error veclor exprassed by
g, = ¥ — M(x,.

The iterative procedure of the EM algorithm
starts with an assurmed initial parameter ser,
£(0), 2(0), R(0)}, where (0} indicates the initial
tine step befors fterations. On the i-th iteratiom,
the Kalman filtercd and smoothed cstimators are
computed using Eq. (6) through Eq. (17), with the
expeclation step given by Eq. (19), the log-likeli-
hood function by Eg. (20), and the muaxirmzation
siep by Eq. (21) through Eq. (23). The procedure
continues until the minimum log-likelihood func-
tion was obtained,

3. Application
3.1, Formudating model structure

Four of the sites located in the Everglades
nutrient removal (ENR) project area (ENR-101,
=203, 301, -401) were not included i the medeling
because of having an cxcessive amount of missing
dala. This study used the weekly rainfall-borne TP
concentration data collected (rom 15 other momi-
toring sites for the maximum period of record from
April 1992 November 1996. The actual periods of
record vary from site to site due to periodic
expansion of the monitoring program. Cenerally,
il would not be technically diflicult to build one
multivariate time-serics model for all 15 sies,
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Table |

Composition of time-geries models and periods of record of the historical daly used [or moded calibration

Maodel 1D Zites (Number of sites) Periods of record Number of Covariate sites
(month/day/year) dara points
Modal.[ 5-63A. 8.7 (2) 477/92-11/5/96 240 ENR. OKEEFS, 5-140 (3)
Wadel-[1 EME, OKEEFS, %140 (3) 4/7/82. 11/5/96 240 $-63A, 5.7 ()
Malsl-11] 5-308, 5-310 () 4/7/92 -11/5/96 240 ENR, OKHEETS, 57 (3)
Muodel-I'V 5-127, 5-131, BGL, BG2. ENPRC (5) Q7/93-10/22/96 lad OKEELTS, 5-308. 5-310 (3)
G-16, L-67A, L6 (3)

Model-V

§/22/95-10/22/96 62

ENR, ENPRC. OKEEFS (3)

making it somewhat moere efficient to estimate
model parameters and values for missing data.
However, developing such a model in this case
was nat possible because of the varying periods of
record and the lack of covariate information other
than the TP dara from adjacent sites. Because of
these limitations, this study constructed five sepu-
rate models (Table 1).

In the time-series model deseribed by Eq. (1),
the stale veclor x, at time { is a funcuon of both
the time-lapgged state x,_, and the concurrently
measured covariate z,., Without knowing proper
covariates for the wet TP data, the concurrently
measured wet TP duta collected from sites adja-
cent to the one being modelsd were used as the
covariates in each model, While inter-site correla-
tvon of concurrently measured dara is stronper
than auto-correlation (correlation in time), select-
ing sites for the z, vector is very important. Be-
cavse 7, does not allow for gups in the data, the
model structure was designed to estimate model
paramerers and missing data in x, sequentially by
taking the state estimates (with filled-in data) of
the previous model in Tabde 1 und applying it to
z, of the current model. Considering the ¢ross-co-
variance, periods of record. and the distance from
the state site, several altermuative models with dif-
ferent combinations of covariates were tried from
which an optimal model was selected for each
case by maximizing the log-likelihood function. In
particular, o oblam a complete covariate data set
for Model-T, Model-IT withour the z, term was
mitially used to estimate the missing data in x, =
{ENR, OKEEFS, 5-140}.

The order ¢ in Eq. (1) was determined using
Akaike information criterta (ALC) (Shumway,

1988) which chooses the model order g that mini-
mizes:

-
AlC(g) = 111( Y owiw, ;‘T) + 2ux%g/T. (24)
f=1

Based on the AIC statistics, 4 = | was dominant
in all five models. For example, the computed
AIC's for Model-II with ¢ ranging trom one to
three are AIC(l)= - 3714; AIC(2) = —3324;
and AIC(3)= — 3449, from which =1 was se-
lected.

3.2, Parameter extimdtion

After setting up the measurernent malrix in
each model based on the availability of data, the
parameters of the fve models were sequentially
estimaled using the EM algorithm. Simce the dis-
tribution of the data hefore estimating values for
gaps were positively skewed (with skewness coetfi-
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= 1 400 8
A \\. /;P z
pr— =2
| 0 ., 00 =
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) 100
-10000 0
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[teration

Fig. 3. Convergence of the lop-likelibood function (M) for
Model-T by the expectanon-maxinnzation algocithm, with
those lor the first (4 ) and the second (OJ) terms.
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Fig. 4. Time-series of weekly wet total phosphorus concentration data aiter filling in gaps.
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clents ranging from 0.34 to [.45), the data were
log-transformed before the modeling was ap-
plicd. For instance, for Model-Il {where x° =
[ENER, OKEEFS, 8-140] and =z} ={5-63A, §-7] are
Lhe Tog-transformed wet TP concentrations in
pe/), the cahibrated model 15 given by

X, 009 002 0 Xie
Xp, | = (002 0.03 —0.03 {xa,_ s
X1, 004 004 —006 | | x5, .

+ | 026 (.29 ”"l

0.30 0.49 o3 W,
{ + | Wa,
0,12 0.68

wy, | 25)

with the diagonal terms in @ and R mamces
being [0.49, 0.67, 0.30] and [0.0021, 0.0033,
0.0029], respectively. As shown by Eg. (25) and
by the resulis of the other four models (which
are not presented here), the regression coefii-
clents for z, are higher thun those of x,. That is,
the wrter-site correlation of concurrently mea-
sured TP values are higher than the time-lupged
correlation of the data.

An interesting observation made during
parpmeter estimation by the EM algorithm was
that the values of the ML function diverged af-
ter certain convergence was achieved (Fig. 3).
That is, the ML (unclion decreased constantly at
the initial iterations, after which it began o os-
cillate with the amplitude of oscillation increas-
ing dramatcally. The optirnal parameter sel in
each model was obtained at the minimum MI.

value. Smoothing estimates, x, and p/, were
congidered optimal al this minimum ML. As
shown in Fig. 3 and the other cases which are
not presenled herc, the secoud term in Eq. (23)
which represents measurement errot covariance
s nol significant to the overall ML funcuon. [t
was also observed during the parameter calibra-
tion that the larger the size of missing data, the
fuster the divergence comes. As a result, the
model for a small stule dimension (probably 2 -4
sites} gives more accurate esumates for missing
data than a larger one. This fact also justilied
development ol Ave separite models instead of
one lumped model. The initial parameler set
$B), (M, A(0)} wis not sensitive to the final
estimation result, which was considered to be
another advantage of the EM algorithm as 4
parameter estimation method for a time-series
model,

4. Summary statistics and trends

After filling in the dula gaps with estimated
values, the summary statistics for each yite were
computed and compared. That is, the final data
consisted of direct observations iF they were
avallable and smoothing estimates given by Eg.
(15) il they were missing (Fig, 4). Plots in Fig. 3
compare some statistics of the data before and
after estimation, whare the censorng ratio is the
probahility ol the data being = below detection
limit (BDL) of 3.5 ug/l. R*s of the censoring

(d ] \ 30 - 40 —
_|(8) Censoring Rm:: (h) Mean { ug/L) |{e) 8D, (gl e
. 4
0.8 - ' j ‘ 50 —
] 20 . .
g 0.2 b 20 =
2 10 i
= a1- . / 10
O'U - l T ‘ T ‘ T j K I 0 = I . T T | T I D I T I T I T ! T
00 0I 02 03 04 0 20 an b n 20 30 40

(Observed

Obgerved

Ohsarved

Fig, 5, Comparison of rainfali total phosphorus concenration values betore and after filling-in missing dat for (1) censoring ratin;

(h) mcan; aod (¢) standard deviation,
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Tahle 2

Summary slatistics for wer wrul phusphorns concentration {pg/l) data afler filling v gaps

Site Nawme

Estimalec Errar

Sampie size BDOL mean Mean 5.D.
B3l 134 224 523 9266 1.69
B2 134 228 10.94 13,20 1.75
ENPRC 143 2.33 7.72 10).4% 2.67
EMR 206 2.6 1035 10.49 149
Ci-36 1% 1.97 16.26 218 1.76
L-a7A 43 1713 552 7 1.37
L-f 43 1.5% 77 6.02 1.49
OKELRTS 204 .70 6.78 3.7 1.67
5-127 132 222 19.02 2593 2.51
8-131 132 2.37 1075 17.64 211
5140 197 1.64 %.00 7.33 l.a7
5-308 139 2.65 17.04 ‘ 14.87 244
330 137 REHS 8.3l 13.50 1.97
5-63A 196 264 13.07 lo.64 213

5-7 191 1.68

B.00 6,37 1.92

ratio, wean, and standard deviation for the data
before and after filling-in are (.70, 0.93, 0.92,
respectively. These comparisons demonstrate that
both the censering ratios and moans were pro-
served in average sense (unbiased) after gaps in
the dara were filled in; however the variance at
vach site was slightly lower than that of the
original data. This. underestimation was mainly
cuused by the increased sample size of the data.
Unlike other sites, the meun and variance ol the
data from $-127 site {thc nght-most dol at each
plot) wers quite undersstimated because of the
presence ol unusually high [P concentration val-
ues in the data seL

Table 2 summarizes the statistics of the data
after filling in data gaps. The mean und standard
deviation tor cach site, as well a3 the BDL mcans,
were compured by the censored statistical method
(Ahn, 1998) because the data were censored. Es-
pecially, the cstimated BDL means can be useful
for computing weekly TP loads based on the wet
T'P concentrilions, where all BDL dawa peints
could be replaced by the BDL mean to get unbi-
ased load estimates. From this table, the pooled
mean and standard deviation for the 15 sites after
filting-in data gups are 10.6 and 12.1 pg/l, respec-
tively, while an average estimation error (square
. tool of the smoothed error covariance) of missing
purtion is = 1.9 pp/l. The mean TP concenlra-

tions 1o rainfall were very low in the water conser-
vation areas (WCA 1, WCA 2, and WCA 3) and
increased slightly from the southern nim of Lake
Okeechobee 10 the north.

Plots in Fig, 6 show the monthly average time-
series of the TP data after filling in missing data
at three arbitranly selected sites, along with o
lincar trend line and a 6-month moving average
serdes. The linear trend line in each plot shows
that there is no temporal trend in the data during
the period of record, while the 6-month moving
average fluctuates due to abnormal high TP con-
centrations that appear randomly in time. The
other sites have the same patterns buat are not

~ presented here. To investigale the seasonality in

the duta, the monthly TP concentration values
from all 15 sites were pooled, and the statistics lor
each month of the year wers computed {Fig. 7).
This analysis confirms that the month-to-month
variation of the data is very weak, almost negligi-
ble, compared to the estimation error (the last
columa in Table 2).

5. Summary

Since the rainfall phosphorus coucentration
duta sers in South Florida have numerous duta
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Fig. 6. Scusonul und yeurly trends of the wet toral phosphatus datn for three selected sites.
gaps s the result of sample contamination, an multivariate time-senies models were developed
allempt wis mude to estimate values for the miss- from historical dara collecied from 15 monitoring

ing information with a statstucal model. Five sites, The model parameters and the missing data
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Fig. 7. Box and whisker plots of the mondhly total phosphorus
concenteations from 13 sites in South Florida, The solid line
represents the monthly means of 15 gires, while the middle,
butlom, and top edges of each hox are the median, 23, and
75% percentiles, and the bovom and tep of whiskers are the
low and high exiremes, respectively.

were estimated simultaneously by an expeclation—
maximization algorithm. I order to compute the
expectalion step, the time-series model was set
into u state—space form and the Kalman filtering
and smoothing algorithms were applied.

As a verification of the model, the statistics of
the data after filling-in the gaps were computedl
and compared with those for the original data set.
The tesulis werc quite satisfactory in that the
censoring ratio and mean of the data (after filling-
in gaps) were not biased. However, the variunce
was slizhtly undercstimated compared to that of
the original data. The average concentranon (y +
7) of wet TP data collected from the 15 sites was
estimated to be 10,6 +12.1 pg/l, with an average
estimation error of 1.9 (1.6 ~ 3.7) ug/l. There is
neither a temporal trend nor 4 seasonality n the
wet TP concentration data. Instead, random noise
in the data appears to be the main cause of
long-term irregular fluctuations in the data. In
seneral, the inter-site correlation of the data 18
stronger Lhan temporal correlation.

Undoubtedly, the TP concentrations tesuling -

from applying this methodology to estimate miss-
ing data can be useful [or calculating the weekly
TP load input from the aunosphere. Alternatively.
the load could be calculated for a longer tme
interval (monthly or yearly), but it would be less
accurale than weekly since the spatial and tempo-
ral variability of the weekly rainfall is very signifi-
GHnL.
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